某火力电站低温烟雾余热系统节约财富降低消耗深入分析

>

图片 1

图片 2

华电新疆发电有限公司红雁池电厂#4锅炉排烟温度较高,锅炉效率低。通过在#4锅炉增压风机与脱硫塔之间的烟道上加装低温烟气余热系统,可降低排烟温度,节约脱硫塔耗水量,提高锅炉效率。

1、概述一般来说,热效率100%以上的锅炉在常识上虽然难以理解,但如果将烟气中的水蒸汽凝结潜热利用起来,并且排烟温度降低得足够低,排烟损失很低的情况下,锅炉的热效率会提高到100%,甚至超过100%。在热能工程领域中计算锅炉的热效率都是利用燃料的低位发热量来进行计算的,国外也是如此,如果按锅炉的高位发位量来计算锅炉的热效率,则100%的热效率是不可能达到的(能量守恒)。利用高效的冷凝换热器和空气预热器来吸收锅炉尾部排烟中的显热和水蒸汽凝结所释放的潜热,从而达到提高锅炉热效率的目的。这种锅炉就是冷凝余热回收锅炉。冷凝式锅炉发轫于欧洲。德国、荷兰、英国、奥地利等国家于上世纪70年代,开发家用冷凝式锅炉,到80年代末期90年代初期,韩国率先将冷凝式锅炉应用在大中型工业锅炉上,冷凝式锅炉除了具有传统锅炉的共性之外,更是制热机理的大胆革命与突破。在一些能源利用率较高的欧美国家,燃气冷凝式余热回收的热水锅炉其热效率高达103%以上,此外在烟气中的CO2和NOX等有害成份也大大降低,这对环保来说是非常有利的。在欧美等国,由于政府鼓励使用冷凝锅炉,所以需求量不断增加,冷凝锅炉的使用率瑞士60%,荷兰50%,德国20%,奥地利(20%),英国(15%)。冷凝式换热器是一种低温热交换器,传热面积大,并使用了价格昂贵的耐腐蚀的不锈钢材料,虽然价格较高,但这只是一次性投资,其投资回收期只需几个月,节约的燃料费很快就将投资回收。冷凝式锅炉可以回收排烟中的水蒸汽凝结潜热,还可以降低烟气中的有害气体,所以它很快确立了其在暖通领域中的地位,欧洲国家对冷凝锅炉的认知普及及政策的倾斜,使得冷凝锅炉的应用极为广泛。而在中国,冷凝锅炉还是空白,人们对冷凝锅炉的认识不足是一重要原因,另一原因就是生产厂家对冷凝锅炉的推广和研发不力。斯大锅炉这一中韩合资的锅炉制造企业自始就至力于将韩国的锅炉技术与中国的锅炉现状相结合,先后研发出冷凝无压热水锅炉、冷凝余热回收锅炉、冷凝常压热水锅炉、冷凝承压热水锅炉,并将韩国的能源利用理念引入中国,特别在冷凝锅炉的推广上做了大量的工作。2、冷凝余热回收锅炉热效率分析燃料中含有大量氢元素,燃烧产生大量水蒸汽。每1NM3天然气燃烧后可以产生1.55KG水蒸汽,具有可观的汽化潜热,大约为3700KJ,占天然气的低位发热量的10%左右。在排烟温度较高时,水蒸汽不能冷凝放出热量,随烟气排放,热量被浪费。同时,高温烟气也带走大量显热,一起形成较大的排烟损失。烟气冷凝余热回收装置,利用温度较低的水或空气冷却烟气,实现烟气温度降低,靠近换热面区域,烟气中水蒸汽冷凝,同时实现烟气显热释放和水蒸汽凝结潜热释放,而换热器内的水或空气吸热而被加热,实现热能回收,提高锅炉热效率。锅炉热效率提高:1NM3天燃气燃烧生产理论烟气量约10.3
NM3(大约12.5KG)。以过量空气系数1.3为例,产生烟气14
NM3(大约16.6KG)。取烟气温度200℃降低至70℃,放出物理显热约1600KJ,水蒸汽冷凝率取50%,放出汽化潜热约1850
KJ,总计放热3450
KJ,约是天然气低位发热量的10%。若取80%烟气进入热能回收装置,可以提高热能利用率8%以上,节省天然气燃料近10%。传统锅炉中,排烟温度一般在160~250℃,烟气中的水蒸汽仍处于过热状态,不可能凝结成液态的水而放出汽化潜热。众所周知,锅炉热效率是以燃料低位发热值计算所得,未考虑燃料高位发热值中汽化潜热量的热损失。因此传统锅炉热效率一般只能达到87%~91%。而冷凝式余热回收锅炉,它把排烟温度降低到50~70℃,充分回收了烟气中的显热和水蒸汽的凝结潜热。以天然气为燃料的冷凝余热回收锅炉烟气中水蒸汽容积成分一般为15%~19%,燃油锅炉烟气中水蒸汽含量为10%某火力电站低温烟雾余热系统节约财富降低消耗深入分析。~12%,远高于燃煤锅炉产生的烟气中6%以下的水蒸汽含量。目前锅炉热效率均以低位发热量计算,尽管名义上热效率较高,但由于天然气高、低位发热量值相差10%左右,实际能源利用率尚待提高。为了充分利用能源,降低排烟温度,回收烟气的物理热能,当换热器壁面温度低于烟气的露点温度时,烟气中的水蒸汽将被冷凝,释放潜热,10%的高低位发热量差就能被有效利用。
3、冷凝式锅炉的设计思想及原理:排烟温度是锅炉的基本设计参数之一。设计锅炉时首先要对该参数进行选定。锅炉排烟温度直接影响到锅炉机组的经济性和尾部受热面工作的安全性。选择较低的排烟温度可以降低锅炉的排烟热损失,有利于提高锅炉的热效率,节约能源及降低锅炉的运行费用。因此,如何有效地降低锅炉的排烟温度并使之合理利用,是一个重大的技术性课题,斯大公司引进韩国技术研发的冷凝式余热回收锅炉,其降低排烟温度是通过以下方法来实现:(1)、通过增加锅炉本体的对流受热面的换热面积或采用提高对流换热系数的方法,降低排烟温度;(2)、在尾部烟道增设高效的鳍片式冷凝换热器和热管式空气预热器。上述方法在实际应用中有效地回收排烟中显热与汽化潜热。4、冷凝式锅炉的显形优势:(1)
使用了热管式空气预热器、鳍片式冷凝换热器,有效地降低了排烟温度。(2)
使用了分体式燃烧机,对燃料燃烧所需的空气进行预热,使燃料充分燃烧及提高炉膛温度。(3)
冷凝节能装置为了防止排烟凝结水的酸性腐蚀,使用进口不锈钢材质制作的螺纹管,它与直管相比,导热性能比直管高2倍以上。(4)烟气的有害气体得到有效的控制,并随冷凝液流入中和池。综上所述,冷凝式锅炉,是传热学、物理学、燃烧学、材料等科学的结晶。它以绝对的经济性傲视传统锅炉。冷凝式锅炉的推广,是一场思维的闪耀与观念的变革,同时,必将会推动热工领域的发展。(一)冷凝余热回收锅炉原理1、天然气(LNG)以及其它的燃气燃料主要是碳(C)和氢(H)两元素结合而成的化合物,能保持完全燃烧,因其不含硫磺成份,所以不产生在低温条件下腐蚀金属的硫酸(H2SO4)和亚硫酸(H2SO3),是一种清洁的燃料。天然气的主要成份:
CH4 + C2H6 + C3H8 + C4H10 + N2 甲烷 + 乙烷 + 丙烷 + 丁烷 + 氮(%) 90 +
6.8 + 2.5 + 1 + 0.3
=1002、含在燃气中的氢(H)在锅炉内部燃烧时与氧结合成水。生成的水从燃烧时产生的热量(高位发热量)中吸收约10%的气化热而变成水蒸汽,与排出的烟气一道排出。(冬季水蒸汽与冷空气相遇而凝结,从烟囱观察到冒白烟应是这个原因。)燃气的高位发热量

[摘 要]介绍了华能某发电公司新建超超临界 660 MW
机组烟道蒸发结晶脱硫废水零排放技术的工艺流程、控制策略,调试期间现场试验研究了投运该零排放技术前后,空气预热器参数、一级省煤器后给水温度、低温省煤器参数和机组主参数的变化,分析了该脱硫废水零排放系统对电除尘、脱硫水耗、输灰流动性和灰品质的影响。结果表明:该烟道蒸发结晶脱硫废水零排放技术对一级省煤器后给水温度、热一、二次风温、空预器出口排烟温度和灰品质均有一定影响,但影响较小;有利于提高电除尘效率,烟道蒸发结晶脱硫废水零排放技术安全、节能、高效,具有推广应用价值。

目前的火电机组主要的热损失有两项,一是汽轮机系统的排汽冷凝热损失,二是锅炉的热损失。尽管随着科技的发展及电力事业的进步,电站锅炉的经济性得到很大提高,但国内外许多电站锅炉依然存在排烟温度偏高、排烟热损失偏大、风机功耗大等普遍性问题,严重影响锅炉运行经济性。其中的排烟热损失是锅炉各项热损失中最大的一项,一般约5%-12%,占锅炉热损失的60%-70%。影响排烟热损失的主要因素是排烟温度,一般情况下,排烟温度每增加10℃,排烟热损失增0.6%-1.0%,相应多耗煤1.2%-2.4%。

  • 汽化热(潜热) = 低位发热量9450Kcal/NM3 – 950Kcal/NM3 =
    8500Kcal/NM33、水在高温烟气中,吸热蒸发为水蒸汽,水蒸汽遇到通过冷空气或冷水的传热面,重新凝结成水而释放潜热(汽化热539Kcal/kg)。冷凝余热回收锅炉就是在燃气锅炉的排烟通道上设置通过冷水的热交换器和加热空气的空气预热器,烟气在通过热交换器的传热面时水蒸汽重新凝结为水,将其汽化热(潜热)释放出来,并加热交换器内的介质(冷水或空气)。4、锅炉热效率的计算:锅炉的正平衡效率:η=(锅炉出力×饱和蒸汽焓-给水量×给水焓)÷(燃料消耗量×燃料的低位发热量)5、将余热回收炉的原理公式化、图表化如(图-1),蒸汽/温水锅炉,炉水的饱和温度比低温水锅炉相对的高,排烟温度也相对要高。显热和潜热均由温水回收的话,则能加热的温水量过大无法处理,故而设置空气预热器。用来加热燃料燃烧所需的空气,极大的改善燃烧状态,并提高了炉胆火焰温度,加强炉胆内的辐射传热。(二)冷凝余热回收锅炉和环境保护燃气与燃重油或轻油相比对环境污染相对小一些,它是一种清洁燃料。但燃烧时生成的CO2、CO、NOx对环境产生了影响。在先进国家也为了减少这个量,开发和使用低NOx燃烧器,低NOx锅炉等。但CO2依然被排出,而NOx控制在60PPM以下排出。一般情况下,天然气燃烧排烟中含CO2含量约为10-12%;NOx含量约为60-80PPM,这些有害气体促成酸雨产生或温室效应,诱发大气臭氧层的破环或影响臭氧生成。使用冷凝余热回收锅炉时,对这一环境污染有极大的缓解。CO2+H2O→H2CO3NOx+H2O→HNO2+HNO3在上式中可以看出:CO2和NOx在冷凝余热回收锅炉的尾部烟道中与冷凝结露的H2O结合生成对应的酸,并随着凝结水从排放管排出。而烟气中的有害成份CO2和NOx含量大大咸少,CO2约减少40%,含量由原来的12%下降至6-7%;NOx约减少至20PPM以下。酸性的冷凝水排出时需进行中和处理:H2CO3+Ca2++OH-→CaCO3+H2OH2NO3+Ca2++OH-→CaNO3+H2O可以设置一中和池,将冷凝水排放到中和池中,定斯检查中和池的PH值。(三)冷凝余热回收锅炉结构和外观(四)热管式空气预热器的构造和原理热管是往真空状态的密封管内封入蒸馏水,管表面附有铝制放射状散热片叶的高性能热传导管。如图所示,在锅炉前上部,以80倾斜角设置的热管内蒸馏水,吸收排烟热量,快速蒸发顺着斜面上升到凝结部(热管内部是真空的,内装蒸馏水,蒸馏水实行相变传热),传热给由送风机送至的供燃烧用的空气后凝结成水(液相)顺管流下继续吸热蒸发,热管内的蒸馏水形成相变循环。烟气的显热和部分潜热被吸收,烟温下降。燃烧用空气被加热,对燃料的充分燃烧作用极大;另一方面热风吹进炉膛时有效地提高了炉膛的火焰温度,加强了炉膛的辐射传热(辐射传热跟火焰温度的四次方成正比)。(五)热管式空气预热器的特点1、热管比铜铝管的热传导性能高出500-1000倍,用热管制成的空气预热器比传统的管壳式空气预热器尺寸、重量都小2/3,可在锅炉的正面组装设置,占用的空间很少。2、管表面附着有热传导性极好的放射状铝片,在小体积的状况下获得较大的传热面积。3、热管的蒸发部和凝结部温度均匀,热胀冷缩量很小,可以说它是一种长寿命装置。(六)冷凝余热回收节能装置的特长1、本节能装置为了防止排烟结露的酸性腐蚀和供应无锈清洁热水,用不锈钢螺旋鳍片管来制成。2、与直管相比,使用了传热性能高出2倍以上的螺旋鳍片管,大小与重量减少到1/2。耐腐蚀的不锈钢材质延长了其使用寿命。3、本装置可组装在锅炉上部,缩小占有空间,生成在传热面上的凝结水亦可自然排出。(七)冷凝余热回收节能装置原理图在排烟通路中,设置冷凝余热回收热交换器,烟气在通路内通过传热面,温度降至露点温度以下,含在排烟中的水蒸汽凝结潜热将冷水或温水加热,这就叫余热回收节能装置(又称冷凝换热器)。在流程中看到的冷凝节能装置在尾部烟道中串联布置(前后布置),将烟气中的水蒸汽冷凝下来,结露后吸收烟气中的部分CO2和NOx,洁净了烟气,起到环保作用。冷凝水经引导管排放到中和池中,与中和池中的碱性石灰水中和。(八)冷凝余热回收蒸汽锅炉与水箱连结方式冷凝余热回收锅炉与水箱相连用循环泵辅助加热,适合在采暖和使用大量生活热水的集中供热楼房,综合医院、宾馆、健康中心、桑拿洗浴等使用;也可以与软水箱相连,加热锅炉给水,提高锅炉的给水温度。(九)冷凝式余热回收热水锅炉与热水箱连接方法利用配置在热水锅炉上的冷凝换热器来加热生活热水或取暖用热水,当对热水需求量减少时,热水温度上升,故在热水箱上需设置膨胀水箱和安全泄压阀,确保安全无误。(十)余热回收装置用在锅炉的给水系统在蒸汽用户无回收系统中不回收蒸汽凝结水时,采用密闭型或开放型流程。(end)

石灰石-石膏湿法烟气脱硫技术,因其具有煤种适用范围广、脱硫效率高、反应速度快、运行成本低等优点,被国内燃煤电站普遍采用。在湿法脱硫洗涤烟气的过程中,烟气中的飞灰会进入石膏浆液内,其中所含氯离子、重金属离子等有害物质也随之进入到烟气脱硫系统中,并在石膏处理工艺过程中随着冲洗水进入脱硫废水环节,形成了富含重金属和氯离子的脱硫废水。为了维持脱硫装置浆液循环系统的物质平衡,防止脱硫设备被腐蚀,保证石膏质量,必须从脱硫系统中排放一定量的废水。燃煤电站脱硫废水存在总量少、污染物含量大、易产生二次污染等问题,故采用烟道蒸发结晶的方式实现烟气脱硫废水零排放,具有重大的现实意义。

我国火电厂平均装机耗水率比国际先进水平高40%-50%,火力发电的节能潜力很大,实施火电厂节能降耗具有很大的实际意义。本文中我们论述通过在增压风机与脱硫塔之间的烟道上加装低温烟气余热系统,利用锅炉的排烟余热加热火电厂热力系统中的凝结水,降低锅炉的排烟温度,提高锅炉热效率,同时由于降低了烟气进入吸收塔前的温度,减少脱硫系统蒸发水量,同步实现高效节水的目的。

烟道蒸发结晶废水零排放技术因其成本较低、占地面积小、维护费用低等优点被国内专家学者广泛研究。国内外学者通过建模计算分析得出:弯曲烟道可使液滴在烟道中停留的时间更长;为确保液滴在进入除尘器前完全蒸发,同时考虑蒸发效果、能耗成本和实际条件,建议工程应用中将雾化液滴直径控制在60μm,烟温控制约为130
℃。基于上述理论研究,华能某发电公司将烟道蒸发结晶废水零排放技术应用于新建超超临界
2×660MW机组,该机组由西安热工研究院有限公司负责调试。

红雁池电厂地处乌鲁木齐市南郊,夏季温度最高可达到35℃,#4锅炉额定负荷下排烟温度设计值为134.6℃,目前由于煤种变化等原因,锅炉结焦结渣较多,烟气量偏大,总灰量的增加也造成了空预器有一定程度的堵塞,影响换热,引起排烟温度偏高,修正后排烟温度达到173.9℃,高出设计值39.3℃。综合分析认为,煤种变化水分增加、烟气量增加、锅炉结焦结渣及空预器换热效率的降低是排烟温度高的重要原因,通过燃烧器减轻结焦结渣及对空预器受热面检查清理可以一定程度上降低排烟温度,但无法从根本上解决问题;从现场实际情况分析,通过增加空预器受热面降低排烟温度可行性不大。

1、系统介绍

红雁池电厂#4锅炉为东方锅炉厂制造的超高压自然循环汽包锅炉,锅炉型号DG670/13.7-21型,П型布置、单炉膛、燃烧器四角布置,切圆燃烧、平衡通风、固态排渣、采用管式空气预热器、钢构架。

该机组采用烟道蒸发结晶废水零排放技术,在主烟道和旁路烟道均布置了脱硫废水喷雾装置。图
1 为该工程方案的整体示意。由图 1
可见:空气预热器出口至低温省煤器为主烟道,主烟道喷雾装置分布于空预器出口的竖直烟道内,且置于同一截面的烟道两侧;旁路烟道在选择性催化还原脱硝反应器出口烟道有4个取烟口,每2个取烟口汇到1个旁路烟道中,旁路烟道内布置有喷雾装置,2段旁路蒸发烟道再分别汇到空预器出口的水平主烟道中。脱硫废水在钢制缓冲箱内沉淀后,由废水泵打入若干个废水雾化装置中,废水与压缩空气在雾化装置中混合形成直径小于60μm
的雾滴,再经喷嘴喷入高温烟气中迅速蒸发结晶。脱硫废水雾滴中含有的重金属等污染物转化为结晶物或盐类等固体,随烟气中的飞灰一起被电除尘器收集下来。脱硫废水缓冲箱内的沉淀物经压滤机处理后外运,蒸发的水蒸气则重新进入脱硫系统,从而实现了废水零排放。该系统可实现喷入雾滴压力、流量的自动调节。

锅炉设计燃用铁厂沟烟煤,校核煤种为硫磺沟煤。在B-MCR工况下,燃用低位发热量Qnet,ar=23770kJ/kg的设计煤种时,燃料消耗量约为98.26t/h。BECR工况设计计算热效率93.3%,TRL工况设计锅炉热效率为92.75%。

脱硫废水经高度雾化后喷入烟道内,绝大部分液滴微粒在烟气的拖拽作用下,与烟气流动保持一致。极少数液滴微粒因布朗运动在烟道内自由扩散,并吸附了烟气中的灰份扩散到烟道壁上,高温下液滴微粒中水份瞬间蒸干,灰份黏结在烟道壁上,经过长期运行灰份逐渐累积加厚,形成积灰。在设计脱硫废水零排放系统时,通过计算流体动力学模拟分析,确定微粒扩散至烟道壁的位置和分布规律,在运行期间利用吹灰蒸汽定时自动多点位吹扫烟道,及时扫清烟道壁灰份,避免烟道内部积灰。吹灰器根据脱硫废水蒸发的烟道结构,设计为多层交叉形式,采用回转式伸缩结构,确保吹扫面积达到
95%以上,同时对灰分易黏结的烟道壁板进行防腐处理。

目前较为先进的设备为采用卧式相变换热器的双循环系统烟气余热利用装置,换热媒介先与烟气在外循环系统内进行换热,吸收烟气余热,然后与凝汽器或余热回水在一液液换热器内换热,将所吸收烟气热量传给进水。根据反馈的换热媒介进入吸热段上联箱的温度,通过自动控制装置控制水量,使进入其吸热段的传热媒介温度低于酸。根据具体设计中换热管道的换热能力,使换热媒介在其吸热段进行自然循环或者强制循环,排烟温度达到设计值。由于系统含有自动控制装置,如煤质发生较大的变化,可根据入炉煤质,重新计算并选取烟气的酸,在安全运行的条件下尽量提高回收热量。

该脱硫废水零排放系统采用集中控制,通过采集分布在烟道内多部位的传感器信号,将机组负荷、烟气流量和排烟温度等数据传入数据处理及运算单元进行综合分析,从而独立控制各废水雾化装置的喷雾量,最大限度地利用烟气热量蒸发废水。同时,设置专用保护模块,在机组负荷低、烟气流量小和排烟温度低等蒸发条件欠佳的工况时,雾化装置减少或停止喷雾,确保该系统不对机组运行造成任何不利影响。

吸热段可布置于空气预热器后的烟道内,也可布置于除尘器与脱硫塔之间的烟道内,换热元件翅片管水平布置(对避免积灰、堵灰极其重要),控制吸热段最低壁温不低于酸,烟气温度可以降低35℃,可将凝结水温度提高25℃,烟气余热利用效果明显;在排烟温度下降后,烟气的体积会减小很多,密度变大,增大了风机的效率,并且有利于减少烟气阻力,根据实际运行经验,在实际运行中低温余热利用装置增加的烟气阻力约300Pa左右。

另外,该脱硫废水零排放系统为防止脱硫废水中的杂质造成系统管路的污染和堵塞,还配备了清水自动冲洗和状态监控设备,可实现整条废水管路和沿程设备的定期清水自动冲洗,冲洗装置的冲洗流量、压力可自动调节。

该方案是在增压风机与脱硫塔之间的烟道上加装余热回收装置,根据现场情况“吸热段”控制壁温高于烟气酸并留有足够的余量,从而换热器不结露、不积灰、不腐蚀。

2、 系统工作流程

对于排烟温度的调节,夏季工况时,锅炉排烟温度会升高,可通过调高余热利用装置的水流量增大排烟温度降,提高运行经济性,冬季工况或煤质变化时,则可借助调小余热利用装置的水流量降低排烟温度降,避免低温腐蚀。因此,该余热利用装置有很好的负荷适应性和煤种适应性。

烟道蒸发结晶脱硫废水零排放技术设计有主烟道和旁路烟道,系统控制应遵循主烟道蒸发优先,且根据空预器出口烟温调节喷雾量的原则。该系统工作流程如下:

余热利用装置冬季可以用来加热热水供暖,烟气余热利用效果更好,夏季用余热利用加热凝结水,减少抽汽量,提高机组经济性。

1 当负荷升高,SCR 脱硝反应器出口烟温高于200
℃时,对脱硫废水零排放系统旁路烟道进行暖管,暖管结束后先投运雾化压缩空气,并打开脱硫废水至旁路烟道截止阀,控制雾化压缩空气压力和废水管至喷雾装置的压力达到0.5MPa
后,方可投运脱硫废水零排放系统旁路烟道。通过调整旁路烟道过烟量和废水喷雾量,保证空预器出口烟温高于105℃且无较大波动。该工况下,脱硫废水全部在高温旁路烟道内蒸发处理。

根据已有的成功经验,尾部烟气余热利用装置使烟气温度降低35℃,可以节约供电煤耗2.5g/kWh,按年发电量12亿千瓦时、标煤单价240元/吨计算,年节约标煤3000吨,年节约费用:

2 随着机组负荷的继续升高,当空预器出口烟温高于110
℃时,打开脱硫废水至主烟道调节阀,投运脱硫废水零排放系统主烟道。通过调整喷雾量保证空预器出口烟温高于
110℃。此时,可适当调整主烟道和旁路烟道的废水喷雾量,使大部分脱硫废水在主烟道蒸发。若主烟道无法消纳所有脱硫废水,则同步开大旁路烟道调节阀和脱硫废水至主、旁烟道调节阀,在确保喷雾后空预器出口烟气温度高于110
℃且不发生大扰动的前提下,提高脱硫废水的处理量。该脱硫废水零排放系统的设计废水喷入量为3m3/h。